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The Silicon Vacancy is a spin-3/2 defect from 
the absence of a Silicon Atom in the 4H-SiC 
lattice.  

It is theorized to be the primarily active defect 
responsible for recombination processes  
(next slide). 

4H-SiC h lattice 
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SDR involves a carrier electron in the conduction band and a hole at an energy defect.  

If carrier  hole  singlet, the defect can catch the carrier electron and recombine.  

Magnetic fields modulate spins  change recombination rates  change current — EDMR Magnetometry

↔ = |00⟩

→ →
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Spin Selection Rules 
Spin is a conserved quantity.  After recombination,   

Hence, the initial electron-hole pair must also have total .  

Formally, recombination is governed by a matrix element of the operator  that 
commutes with total spin : 

Stot = 0.

S = 0

ℋrec
̂S2

[ℋrec, ̂S2] = 0
Wigner-Eckart —

⟨S′￼, m′￼S |ℋrec |S, mS⟩ ∝ δS′￼S δm′￼SmS

The final state has , hence the allowed initial state has .Stot = 0 S = 0
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The Spin Hamiltonian

ℋ = ĤZ + ĤHF + ĤZFS + ĤEX

The Spin Hamiltonian primarily governs the spin physics of 4H-SiC.  

It is the combination of Zeeman, Hyperfine, Zero-field splitting, and Exchange Interactions 

ĤZ = μB
⃗S ⋅ g ⋅ ⃗B 0 ĤHF = ̂S ⋅ A ⋅ ̂I ĤZFS = ̂S ⋅ D ⋅ ̂S ĤEX = − J ̂Sa ⋅ ̂Sb

In 4H-SiC SDR, the relevant spin system has 2 spin-1/2 electrons (carrier + defect hole) and two 
spin-1/2 nuclei (Silicon and Carbon).  

Hence, as each particle has two possible states — , there are |ms = ± 1
2

⟩ ∈ { | ↑ ⟩, | ↓ ⟩}

24 = 16; dimℋ = 16

basis states spanning the 4H-SiC Hilbert space (with  only). V−
Si
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The Spin Hamiltonian
We define the electron-coupled + nuclear-zeeman basis:  .  
The electrons are coupled together, whereas the nuclei  remain in their Zeeman  basis. 

ℬ = { |s, m⟩ ⊗ |mI1
, mI2

⟩}
I1, I2 | ↑ , ↓ ⟩

|1,1⟩ ⊗ + 1
2 ⟩1

+ 1
2 ⟩2

|1,1⟩ ⊗ + 1
2 ⟩1

− 1
2 ⟩2

|1,1⟩ ⊗ − 1
2 ⟩1

+ 1
2 ⟩2

|1,1⟩ ⊗ − 1
2 ⟩1

− 1
2 ⟩2

|1,0⟩ ⊗ + 1
2 ⟩1

+ 1
2 ⟩2

|1,0⟩ ⊗ + 1
2 ⟩1

− 1
2 ⟩2

|1,0⟩ ⊗ − 1
2 ⟩1

+ 1
2 ⟩2

|1,0⟩ ⊗ − 1
2 ⟩1

− 1
2 ⟩2

|0,0⟩ ⊗ + 1
2 ⟩1

+ 1
2 ⟩2

|0,0⟩ ⊗ + 1
2 ⟩1

− 1
2 ⟩2

|0,0⟩ ⊗ − 1
2 ⟩1

+ 1
2 ⟩2

|0,0⟩ ⊗ − 1
2 ⟩1

− 1
2 ⟩2

|1, − 1⟩ ⊗ + 1
2 ⟩1

+ 1
2 ⟩2

|1, − 1⟩ ⊗ + 1
2 ⟩1

− 1
2 ⟩2

|1, − 1⟩ ⊗ − 1
2 ⟩1

+ 1
2 ⟩2

|1, − 1⟩ ⊗ − 1
2 ⟩1

− 1
2 ⟩2

 manifold|1,1⟩  manifold|1,0⟩  manifold|0,0⟩  manifold|1, − 1⟩

Able to recombine 
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Calculating Hamiltonians
̂HZ |s, m⟩ = mgμBB |s, m⟩ .

ĤZFS |s, m⟩ = D m2 |s, m⟩ −
D
3

s(s + 1) |s, m⟩

+
E
2 [s(s + 1) − m(m + 1)] |s, m + 2⟩

+
E
2 [s(s + 1) − m(m − 1)] |s, m − 2⟩ .

ĤEX |s, m⟩ = − J
s(s + 1) − 3

2

2
|s, m⟩ .

Forbidden  transitionsΔm = 2

Hamiltonian Action on Electronic-States 
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Calculating Hamiltonians
We calculate the Hyperfine  Hamiltonian on the full-Zeeman basis and covert to the 
coupled-zeeman basis via Clebsch-Gordan.  

For two electrons with one nearby nucleus:  

For two electrons with two nearby nuclei:  

16 × 16

ĤHF ma, mb, mI⟩ = ∑
k∈{a,b}

ℏ2

4
(Akx − Aky) ̂Sk+

̂I− δmk,mI
−mk, − , − mI⟩

+ ∑
k∈{a,b}

ℏ2

4
(Akx − Aky) ̂Sk−

̂I+ δmk,−mI
−mk, − , − mI⟩

+ ∑
k∈{a,b}

Akz ℏ2 mk mI mk, − , mI⟩ .

ĤHF ma, mb, mI1
, mI2⟩ = ℏ2

2

∑
p=1

(Aapz ma mIp
+ Abpz mb mIp) ma, mb, mI1

, mI2⟩

+
ℏ2

4 [(Aa1x − Aa1y) δma,mI1
+ (Aa1x + Aa1y) δma,−mI1] −ma, mb, − mI1

, mI2⟩

+
ℏ2

4 [(Aa2x − Aa2y) δma,mI2
+ (Aa2x + Aa2y) δma,−mI2] −ma, mb, mI1

, − mI2⟩

+
ℏ2

4 [(Ab1x − Ab1y) δmb,mI1
+ (Ab1x + Ab1y) δmb,−mI1] ma, − mb, − mI1

, mI2⟩

+
ℏ2

4 [(Ab2x − Ab2y) δmb,mI2
+ (Ab2x + Ab2y) δmb,−mI2] ma, − mb, mI1

, − mI2⟩ .

ĤHFcoupled
= W (ĤHFzeeman) W† , W =

1 0 0 0
0 1

2

1

2
0

0 1

2
− 1

2
0

0 0 0 1

⊗ 𝕀4×4
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5 columns from  16 × 16 [ℋ]ℬ
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Eigenspectra Simulations

Energy Degeneracies 
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The Stochastic Liouville Equation (SLE) 

∂ρ
∂t

= −
i
ℏ

[ℋ, ρ] −
k
2 {Λ, ρ} + pΓ

The Schrödinger Equation 
  
Dissipation Term at rate k  

Generation Term at rate p 

Describes the evolution of the spin-ensemble with environmental interactions.  

The first term reproduces the unitary Schrödinger Equation in density-matrix formalism — the 
“Quantum Liouville Equation (QLE).” 

The second term introduces dissipation at rate k: the projection operator  removes spin-pairs 
from its subspace.  

The third term acts as a source — injecting spin-pairs with random orientations at rate p. 

Λ
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The Stochastic Liouville Equation (SLE) 
∂ρ
∂t

= 0 = −
i
ℏ

[ℋ, ρ] −
1
2

(kS + kD){ΛS, ρ} −
1
2

kD {ΛT, ρ} +
1
16

pΓ .

From Hansen and Pedersen [1].  

- The second term, via the singlet projector , removes singlet states at the effective rate 
 

-  The third term, via the triplet projector , dissociates triplets at rate   
- The final term injects carriers at rate p, with . The factor 1/16 normalizes this over the 

16-dimensional Hilbert space 

ΛS
(kS + kD)

ΛT kD
Γ = 𝕀16×16

We solve the steady-state SLE since carrier generation and annihalation are at constant rates. This 
will return, the density matrix:  

which encapsulates the full spin-physics — as a function of the Hamiltonian parameters. 

ρ( ⃗θ), ⃗θ = ⟨B, g, μB, μN, A, J, D, ⋯⟩
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0 = −
i
ℏ

[ℋ, ρ] −
1
2

(kS + kD){ΛS, ρ} −
1
2

kD {ΛT, ρ} +
1
16

pΓ .

Rearrange to Sylvester-Lyanupov form: 

Aρ + ρA† + g = 0

The solution is given by , but difficult numerically.  

We vectorize into a  linear system using the identity, with Fortran column ordering

ρ = ∫
∞

0
e−iAtgiA†t dt

256 × 256

A = −
i
ℏ

ℋ −
1
2

(kS + kD)ΛS −
1
2

kDΛT, g = −
1
16

Γ .

vec(XρY) = (YT ⊗ X) vec(ρ) ⇒ (I ⊗ A + A† ⊗ I) vec(ρ) = − vec(g)
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Building the EDMR Model
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Building the NZFMR Model

Now that we have the density matrix , we can compute the singlet population in the 
silicon-vacancy — carrier electron system as a function of B. 

ρ( ⃗θ) ≃ ρ(B)

Singlet Population (B) = Tr(ΛSρ(B))

Since only singlet states recombine and thereby modulate the observed EDMR current, the singlet 
population is directly proportional to the EDMR signal. Therefore, our EDMR model takes the 
simple form 

I(B) ≃ ATr(ΛSρ(B)) + I0

However, this is only with Hamiltonian Parameters (NZFMR) — not experimental (RF Freq.) that 
produce the resonances. We now add the Rotating Wave Approximation.  
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This adds time-dependence!, making it too complicated to solve the SLE for every B… 
Additionally, in the lab-frame, states whip around at  — difficult numerically.  ν ∼ GHz

Rotating Wave Approximation 
In Magnetic Resonance, we have  
- Large static field    giving Larmor precession at RF frequency  — Zeeman Resonances  
- Transverse oscillting field   that drives spin transitions, yielding the extra drive 

hamiltonian: 

B0
̂k ν

B1 cos(2πνt)

ℋdrive(t) = hω1 cos(2πνt) ̂Sx, ω1 = γeB1, [Hz]

We expand the drive hamiltonian in terms of raising/lowering operators in the rotating frame, and 
drop the fast oscillating  terms: e±i4πνt ∼ 0

ℋ′￼drive(t) =
hω1

2
̂Sx +

hω1

2 [ ̂S+e+i4πνt + ̂S−e−i4πνt] ⇒ ℋRWA
drive =

hω1

2
̂Sx .

ℋeffective = ℋ + ℋRWA
drive
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Final EDMR Model 

Lock-in amplication is implemented via numerically solving X(Bi) =
2
T ∫

T

0
I(Bi + β sin ωmt)sin ωmt dt

(the first-harmonic, in phase, idealized lock-in output)

Given the effective Hamiltonian  

For every B value:  
1. Solve the effective SLE for  
2. Calculate Singlet Population(B) 
3. Perform Lock-in amplification  
4. Determine proportionality constants  from fitting. 

ℋeffective

ρ( ⃗θ) ≃ ρ(B)

A, I0
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Final EDMR Model 

Quoting Jakob Nielsen [2]:  

- 0.1 seconds is about the limit for having the user feel that the system is reacting instantaneously.  
- 1.0 seconds is about the limit for the user’s flow of thought to stay uninterrupted  
- 10 seconds is about the limit for keeping the user’s attention

A 200-point sweep (-100G to 100G) takes ~0.2s to render on a single M3 silicon core. 
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0 Modulation

“Half field”

New

NZFMR

Resonance
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