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The Optimized Curve Fitting (OCF) algorithm aims to determine the slope of the Red Clump
(RC) cluster in a color-magnitude diagram (CMD) with minimal manual intervention. Traditional
methods often rely on visual adjustments and unsharp masking techniques to identify the RC
slope, leading to potential inconsistencies and biases. The OCF algorithm provides a systematic
and reproducible approach to identifying the RC slope by segmenting the RC bar into defined tiles
and iteratively fitting compound models on the extracted star data.

1 Procedure

1.1 Inputs & Parameters

The algorithm requires the following inputs:

1. Star Catalogs:
Two matched star catalogs, designated as catalog1 and catalog2, are used to generate the
CMD. The CMD is plotted as catalog1 − catalog2 vs. catalogy, where catalogy is either
catalog1 or catalog2.

2. Initial Parallel Cutoffs:
A set of parallel lines that roughly delineate the RC slope. These lines do not need to be
highly precise but should tightly bound the RC bar.

3. x-Range Cutoff :
The range in the x-axis color space that defines the width of the RC bar.

4. Tile Count n:
An integer specifying the number of segments/tiles to divide the RC bar.

The provided inputs for an example CMD are visually represented in Figure 1, illustrating the
parallel and x-range cutoff used to bound the RC cluster.
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Figure 1: Example NRCB1 F115W − F212N vs. F115W provided cutoffs

1.2 Preliminary Steps

1.2.1 Extend Parallel Cutoffs

The algorithm begins by extending the width of the initial parallel lines by a factor of 3, allowing
for a broader range of stars to be included in the analysis. The expanded lines are also shown in
Figure 1 in blue.

1.2.2 Generate the First Tile

Using the extended parallel lines and the specified tile count n, the algorithm generates a starting
tile of width x_range / n. It is placed at the left-most end of the provided x-range, in between
the parallel cutoffs, extending horizontally by the calculated tile width in a left-riemann fashion.
An example starting bin for n = 9 is shown in Figure 2 below.

Figure 2: Starting bin for n = 9
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1.2.3 Extract Stars from Starting Tile

The algorithm then extracts the indices of stars that fall within the bounds of the first tile. The
corresponding magnitudes from catalog1 and catalog2 are retrieved and these stars are compiled
into a pandas DataFrame object for subsequent analysis.

1.3 OCF Algorithm

Once the magnitudes of the stars in the starting bin have been extracted, teh algorithm proceeds
to the OCF phase for this specific bin. The primary goal of OCF is to produce a compound model
using the astropy.models library that fits the hitogram of catalogy magnitude data optimally,
thereby minimizing the error of the mean magnitude for stars in that bin.

The compound model used consists of a Gaussian component (Gaussian1D()) and a linear
component (Linear1D()). This combination is chosen because it allows the mean magnitude to
be calculated more accurately by focusing the Gaussian fit on the dense region of stars, while the
linear component accounts for outliers and stars outside the dense region.

1.3.1 Compound Model Parameters

A compound Gaussian1D() + Linear1D() model requires five parameters:

1. Gaussian Component:

- Amplitude

- Mean

- Standard Deviation

2. Linear Component:

- Slope

- Intercept

The objective of OCF is to determine the optimal values for these parameters for a compound
model such that the error in the model’s returned mean parameter is minimized.

1.3.2 OCF Steps

The OCF Algorithm employs two main iterative steps to achieve optimal fitting:

1. Looser-Requirement Iterative Compound Fitting:
- This step aims to determine suitable initial parameter values for the Gaussian mean and
standard deviation. It uses the overall mean and standard deviation from the generic
scipy.stats.norm.fit() fit as starting parameters for the compound models.

- The algorithm iterates through trial compound fits of increasing amplitude, accepting every
fit that meet loose requirements for the returned standard deviation and amplitude. These
fits help to calculate a more precise mean and standard deviation, which are used as the input
parameters for the compound models in the next step.
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2. Strict Requirement Iterative Compound Fitting:
- Using the mean and standard deviation parameters from the previous step as more precise
model input parameters, this phase generates new compound models and again, iterates
through various increasing amplitude values.

- The algorithm employs much more strict requirements on the returned fitting values, en-
suring the returned parameters (mean, standard deviation, amplitude) fall within acceptable
ranges that ensure the fit was a success.

- In addition to the returned fitting parameter requirements, a synthetic dataset is also gener-
ated to produce a histogram that similarly follows the shape of compound model. The stricter
requirements also require a ks_statistic and an earth mover’s distance EMD_metric to fall
within acceptable ranges that guarantee the model’s goodness-of-fit.

- Parameters from successful fits are stored for further analysis.

1.3.3 Error Calculation

If a compound model passes the strict requirements, the error of the mean is calculated using one
of two methods, allowing the user to choose.

1. Bootstrapping:
This method is computationally intensive and involves repeatedly resampling the data and
fitting the compound model to histograms of each resampled dataset. The variance of the
mean is estimated from the standard deviation of the returned mean parameters of every fit.

2. Weighted Gaussian and Linear Error Calculation:
For the Gaussian part of the compound mode, the error is calculated as

εGaussian =
σGaussian√
NGaussian

where NGaussian is the number of stars within three standard deviations (σGaussian) of the
returned mean.

For the Linear part, the error is derived from the standard deviation of histogram bin residuals
for bins outside the Gaussian region. The linear error is calculated as

εLinear =
σLinear√
NLinear

where NLinear is the number of stars under the linear-part of the fit.

These errors are then weighted by the ratio of stars under each part of the model:

εoverall =
√
gaussian_weight · εGaussian

2 + linear_weight · εLinear2

This error calculation is repeated for histogram bin numbers in the range of int(
√
Ntotal) to

int(
√
Ntotal+10). The minimum error from these calculations is chosen as the overall error.
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I have found this error almost nearly matches the error derived via bootstrapping for most
cases. This runs much faster however.

The entire OCF algorithm is repeated for initial catalogy histogram bin numbers ranging from
eight to twenty. This is to ensure the optimal successful bin parameters are found, as increasing
the number of histogram bins affects the generated compound models.

After completing all the compound fitting iterations, the algorithm selects the parameters of
the fit that correspond to the minimum error. These optimized parameters provide an accurate
and reliable mean magnitude for the starting bin.

1.3.4 Handling OCF Algorithm Failures

There is a possibility that the OCF algorithm might fail to find any successful compound models,
even after iterating through various amplitude values. The primary reason for this failure is often
the lack of sufficient stars in the bin to fit an effective Gaussian1D() + Linear1D() compound
model.

To address this issue, the algorithm includes a mechanism to extend the bin in color-space and
reattempt the fitting process:

1. Initial Failure Handling:
- If the OCF Algorithm fails for the starting bin, it extends the bin by 0.1 in color-space of
the CMD to include more stars.

- The algorithm then again extracts the stars in the new, larger bin and re-runs the OCF
algorithm on the extended bin.

2. Iterative Expansion:
- If the OCF algorithm fails again, the bin is extended another 0.1 in color-space.

- This process is repeated up to 7 times, each time extending the bin by 0.1, to include a
progressively larger number of stars.

3. Final Failure Condition:
- If the OCF algorithm to find a successful compound model after 7 extensions (a total
extension of 0.7), it indicates a deeper issue.

- In this case, the failure is likely due to improper initial cutoffs (x-range / parallel line
parameters). From my experience it is mainly from the parallel line parameters, after the 3x
width increase, extending into the main-sequence part of the CMD, which prevents a single
one-peak compound model from succeeding.

After completing the OCF algorithm for the starting bin, the algorithm proceeds by generating
a new bin starting at the end of the previous bin. This new bin similarly begins having a width of
x_range / n, and OCF is again implemented on the new bin. This iterative process continues, with
each new bin starting where the previous one ends, until the rightmost x value of a bin exceeds
the end of the provided x-range. OCF is applied one last time to this final bin and the algorithm
concludes.

After a successful OCF run across the RC cluster, the algorithm outputs a plot like the one
below for the example CMD:
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The slope is finally calculated using a weighted scipy.optimize.curve_fit() linear fit which
produces the following plot in Figure 3:

Figure 3: Calculated Slope using OCF algorithm for example CMD. Note that the Error Bars are
scaled by 20x.

1.4 Goodness-of-Fit Assesment for Entire Compound Model Fitting

To ensure the accuracy and reliability of the derived RC (Red Clump) slope from the multi-
compound model fitting, we assess the goodness-of-fit by generating a synthetic RC cluster using
the optimized compound models and performing subsequent statistical tests.

1. Generating Synthetic RC Clusters:
- For each tile of the RC cluster, a synthetic RC cluster is generating using its corresponding
optimized compound model.

- This synthetic cluster is designed to mimic the distribution of the actual RC tile. Example
synthetic RC Tile clusters are shown in Figure 4.

2. Performing the Kolmogorov-Smirnov (KS) Test:
- The KS test is employed to statistically compare the entire collection of synthetic RC clusters
against the actual RC cluster.

- This test evaluates the goodness-of-fit by calculating the distance (ks_statistic) between
the empirical cumulative distribution functions (CDFs) of the synthetic and actual RC clus-
ters.

- A good fit, based on the KS test, thus has a ks_statistic close to 0.

7



3. Plotting CDFs and Density Plots:
- To visually inspect the similarity between the synthetic and actual RC clusters, CDFs and
density plots are generated.

- These plots help in identifying any significant deviations between the distributions of the
synthetic and actual RC clusters.

- Example CDF and Density Plots are shown in Figure 5 and 6, respectively.

When plotted using identical x-values, the synthetic cluster appears visually distinct from the
actual RC cluster. This difference arises because each tile is generated from a single optimized
compound model, resulting in a synthetic cluster that only follows the characteristics (histogram)
of that model rather than the exact visual traits of the actual RC cluster. But for the purposes of
calculating the mean, the histograms closely resembling each other is what matters.

After the goodness-of-fit has been established, several statistical plots can be generated:

1.4.1 Plotting Synthetic vs. Actual RC clusters on Example CMD

Figure 4: Hexbin plots comparing synthetic vs. actual RC tile data for tiles 12 and 13 from an
n = 18 run.
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1.4.2 Plotting CDFs

Figure 5: Overlaid synthetic & actual CDFs for tiles 12 and 13 from an n = 18 run.

1.4.3 Plotting Densities

Figure 6: Overlaid density plots generated using a KDE for tiles 12 and 13 from an n = 18 run.

And finally, plotting the residuals which as a histogram, should resemble a Gaussian.
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1.4.4 Plotting Residuals

Figure 7: Residuals from the calculated linear fit from the OCF algorithm from an n = 18 run.

1.5 Running the Algorithm

The algorithm requires an input parameter n, an integer telling the algorithm how many tiles to
segment the RC bar into. However, different values of n could result in calculating different slopes.

For this reason, the algorithm lets a user input an array of different ns they wish to run the
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algorithm for. It then finds the optimal n such that the slope-error is minimized and generates the
above plots for the optimal n value.

It also generates a plot like below, allowing one to compare the results of different n and any
patterns that emerge across calculated slopes and errors as n increases.

Figure 8: Comparing OCF slope and error results across different n
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2 Alternative OCF Algorithm – Rectangles

For CMDs that look like this:

Figure 9: NRCB1 F212N - F323N vs. F212 CMD

where it is potentially difficult to confidently generate the required parallel line RC cutoff input
parameters for the tiled-OCF algorithm detailed above, there is another option using an overall
rectangular cutoff rather than two parallel cutoffs.

This is fairly self-explanatory. Rather than generating tiled-bins that follow the parallel lines
across the slope of the RC, the algorithm generates equal-height tiles that span the RC cluster.
This method replaces the parallel cutoff input parameters with an xlim and ylim parameter that
defines the overall rectangular RC cutoff within which the tiles are generated.

The rest of the OCF algorithm is identical.

Note that this method is discouraged as the main method of calculating RC slopes. I recommend
using this method only to calculate a slope from which the parallel cutoffs of the first method can
better be determined. Usually though, unsharp-masking is more than good enough.

In addition, more often than not, it is impossible to generate a perfect rectangle RC cutoff using
an xlim and a ylim that does not cross into the main-sequence portion of the CMD (which would
fail the OCF algorithm).

§ – red_clump_riemann.py, red_clump_script.py.
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