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ABSTRACT

Quantum sensing offers a path toward compact self-calibrating magnetometers for heliophysics and planetary
missions, where conventional field probes struggle with size, weight, power, and radiation tolerance. The Quan-
tum Sensing and Spin Physics (Q-SASP) laboratory at NASA is addressing these limitations by exploiting spin
defects in SiC diodes and reading them out via electrically detected magnetic resonance (EDMR) and near-
zero-field magnetoresistance (NZFMR). Here, we present a comprehensive resonance-to-resonance simulation of
EDMR signatures arising from the negatively charged silicon vacancy in 4H-SiC. The model reproduces the
experimental spectral response and quantitatively demonstrates that spin-dependent recombination pathways
primarily govern magnetometric sensitivity and overall device performance. Additionally, we characterize the
power-dependent traits of resonance features to demonstrate how RF drive conditions affect signal amplitudes
and linewidths while highlighting practical operating regimes for device operation.
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1. INTRODUCTION

High-fidelity magnetic field sensing supports diverse technologies, from aircraft icing-phase monitors [1] and
neuronal current mapping in biological specimens [2] to global planetary-field surveys [3,4]. Achieving the required
sub-µT resolution while satisfying size, weight, power, and radiation-tolerance constraints pushes conventional
flux-gate and Hall probes to their limits. Solid-state quantum sensors based on point defects in wide-band-gap
semiconductors offer an attractive path forward.

Silicon carbide (SiC) is a particularly promising host: its low spin–orbit coupling and sparse nuclear spins sup-
press magnetic noise, enabling long spin-coherence times at room temperature [5]. Optically active defects such
as the neutral divacancy (V V 0) [6,7] and the negatively charged silicon vacancy V −

Si [8–10] exhibit spin-dependent
near-infrared fluorescence and have even been proposed for quantum-communication links [11,12]. Established
SiC fabrication methods make it possible to embed these centers in photonic resonators that boost collection
efficiencies [13] and waveguides that route emission on-chip [14]. Deep-level defects that lack a spin degree of
freedom are also valuable as single-photon sources for quantum key-distribution protocols or as electrically ad-
dressable emitters for integrated optoelectronics [15–17]. The same material platform therefore supports both
quantum communication and quantum sensing. Although optically detected magnetometry has advanced rapidly,
the prospect of electrical read-out, via ionization-initiated defect states, could further simplify instrumentation
and facilitate monolithic integration with existing Si/SiC electronics. Initial analysis suggests that sensitivities
in the several-hundred-pTHz−1/2 regime are within reach [3], leaving ample headroom for future improvement.



1.1 Spin Hamiltonian, Zeeman Response, and Field Sensitivity

The spin dynamics of a point defect with total spin S are governed by the Spin Hamiltonian

Ĥ = µB B0 ·g·S+ S·A·I+ S·D·S+ S·J·S, (1)

where µB is the Bohr magneton, g the Zeeman tensor, A the hyperfine tensor, D the second-rank crystal-field
tensor (non-zero for S≥1) [20], and J the exchange tensor. In the high-field limit gµBB0 ≫max{∥D∥, ∥A∥}, the
energy levels separate linearly,

ν(B0) =
gµB

h
B0,

∂ν

∂B0
=

gµB

h
≈ 28 MHzG−1, (2)

so a frequency shift δν maps directly onto a field change δB0 = h δν/(gµB).

1.2 Spin-Dependent Recombination and EDMR

Lépine’s pioneering experiment on silicon diodes showed that resonant spin flips can modulate photocurrent,
inaugurating electrically detected magnetic resonance (EDMR) [21]. The believed primary mechanism is spin-
dependent recombination (SDR): triplet electron-hole pairs live far longer than singlets, so microwaves that mix
the two manifolds change the steady-state carrier population. The Kaplan–Solomon–Mott model [22] predicts
the relative current change

∆I

I0
≈ η

Prf

1 + Prf/Psat
, (3)

with efficiency η and saturation power Psat. State-of-the-art devices can register the signal of fewer than one
hundred donors [23], implying formidable magnetometric potential when combined with the Zeeman response of
Equation (2).

1.3 Near-Zero-Field Magnetoresistance (NZFMR)

When Zeeman and hyperfine energies are comparable (B0≲1 G), the singlet and triplet subspaces mix intrinsi-
cally, yielding a purely electrical magnetoresistance

∆I(B0) ∝
B2

0

B2
0 +B2

hf

,

∣∣∣∣ dI

dB0

∣∣∣∣
max

=
∆I

2Bhf
, (4)

where Bhf is the root-mean-square hyperfine field. Because Bhf is set by immutable nuclear moments, the line
center furnishes an intrinsic, drift-free frequency reference ideally suited to multi-year space missions. Sub-µT
sensitivities have already been achieved in commercial 4H-SiC Schottky diodes at 500◦C without microwaves or
optics [24].

1.4 The Negatively Charged Silicon Vacancy

The monovacancy V −
Si in 4H-SiC is a quartet (S = 3/2) whose axial crystal-field parameter is D≈35 MHz [25],

enabling on-chip radio-frequency control. Room-temperature coherence times exceed 100µs [26], and vector
magnetometry has already been demonstrated under ambient conditions [27]. Its thermal resilience, radiation
hardness, and full compatibility with SiC microfabrication make V −

Si a leading candidate for compact magne-
tometers on heliophysics and planetary missions.

1.5 Scope and Contributions

Here we perform a resonance-to-resonance simulation of V −
Si EDMR in 4H-SiC, extracting the tensor parameters

of Equation (1) and propagating them into the low-field description of Equation (4). The resulting NZFMR line-
shape and sensitivity predictions therefore link microscopic spin physics directly to the practical requirements
of NASA’s next-generation, self-calibrating quantum magnetometers. Additionally, we chart how hyperfine
sidebands broaden and saturate with RF power, supplying empirical benchmarks that for future simulation
validation and highlight optimal operating regimes for device deployment.



2. SIMULATING THE SILICON VACANCY FOR EDMR

2.1 Model Hamiltonian

The negatively charged silicon vacancy (V −
Si ) in 4H-SiC is modeled as two S = 1

2 electrons (S1,S2) coupled to
one 29Si and one 13C nuclear spin (ISi, IC). The composite Hilbert space

H =
(
1
2–electron

)⊗2 ⊗
(
1
2–nucleus

)⊗2
, dimH = 24 = 16.

The static spin Hamiltonian is a linear operator on the 16-dimensional Hilbert space:

Hspin ∈ L(H ), H ∼= C16.

It can be decomposed as the combination of four Hamiltonians:

Hspin = ĤZ + Ĥhf + ĤZFS + Ĥex,

where

ĤZ = µBB0 ·ge ·(S1 + S2) + γSi B0 ·ISi + γC B0 ·IC,

Ĥhf = S1 ·ASi ·ISi + S2 ·AC ·IC,

ĤZFS = S1 ·D·S2,
∥∥D∥∥ ≃ 35 MHz,

Ĥex = J S1 ·S2, J ≲ kHz (weak).

All operators can be expressed in the coupled {|s,m⟩ ⊗ |mI,Si,mI,C⟩} basis, and symbolic implementation lets
B0 and tensor parameters vary at runtime.

2.2 Spin-dependent recombination kinetics

To link spin dynamics to EDMR, we embed the Hamiltonian in a modified steady-state stochastic Liouville
equation adapted from [38]:

0 = − i

ℏ
[Hspin, ρ]−

kS + kD
2

{ΛS, ρ} −
kD
2

{ΛT, ρ}+
p

16
Γ, (5)

where curly brackets denote the anticommutator, ΛS (ΛT) projects onto the singlet (triplet) electronic subspace,
kS and kD are the singlet-recombination and triplet–dissociation rates, p is the spin-pair generation rate, and Γ is
the 16× 16 identity. Because only singlet states recombine (and hence change the current) due to spin-selection
rules, the EDMR current is proportional to the steady-state singlet population,

I(B0) = ATr(ΛSρ) + I0,

where A and I0 are global scaling constants.

2.3 Accelerated Lyapunov solver

Equation (5) can be cast into Lyapunov form Aρ+ ρA† + g = 0, with

A = − i

ℏ
Hspin − 1

2 (kS + kD)ΛS − 1
2 kDΛT, g = − p

16 Γ.

Vectorizing ρ via vec(Aρ+ρA†) =
(
I⊗A+A†T⊗I

)
vecρ yields a 256×256 linear system solved once per B0 value

with a cache-aware LU factorization (200-point sweep, –100 G → +100 G: ∼200 ms on a single M3 core).



2.4 Microwave drive and rotating frame

A transverse field Ĥdrive(t) = ℏω1 cos(2πνt)Sx is carried to the rotating frame; after applying the rotating-wave
approximation, only ĤRWA = ℏω1

2 Sx survives. The dressed-state Rabi frequency is Ω =
√

(ω − ω0)2 + ω2
1 , so the

full spin Hamiltonian becomes Hspin = Ĥstatic + ĤRWA.

2.5 Lock-in reconstruction

For a sinusoidal field modulation Bpp cosωmt of peak-to-peak amplitude Bpp = 2 G, the ideal first-harmonic
lock-in signal is

V1(B0) =
2

Bpp

1

2π

∫ 2π

0

I
(
B0 +

Bpp

2 sinϕ
)
sinϕdϕ.

When Bpp is much smaller than the intrinsic linewidth, the integral reduces to the familiar derivative relation

V1 ≈ Bpp

4

∂I

∂B
. (6)

The integral is evaluated numerically by sampling the modulation phase over one complete cycle:

ϕj =
2πj

nϕ
, j = 0, 1, . . . , nϕ − 1,

with nϕ = 256 uniformly spaced points. A Riemann-sum approximation yields

V1(B0) ≈ 2

Bpp nϕ

nϕ−1∑
j=0

I
(
B0 +

Bpp

2 sinϕj

)
sinϕj .

This discrete formulation reproduces both the amplitude and the phase of the first-harmonic lock-in response.

2.6 Parameter set and validation

Tensor parameters
[
ge,ASi,AC,D, J

]
are adopted from literature, whereas kinetic rates (kS, kD, p) and scaling

constants (A, I0) come from a least-squares fit to a 3 V, 200 MHz, 2 G-modulated reference spectrum. The
simulation reproduces the central NZFMR peak and hyperfine satellites at ±71.4 G, as shown in Figure (1). If
modulation is disabled, the raw spectrum (bottom panel) reveals the resonance manifold.

3. EMPIRICAL ANALYSIS OF POWER-DEPENDENT SIGNAL
CHARACTERISTICS

EDMR spectra often contain several partially overlapping resonances as well as experimental artifacts, both of
which can obscure the underlying spin physics and depress the signal-to-noise ratio. To address these issues
in 4H-SiC, we (i) optimize the lock-in reference phase in post-processing, (ii) extract signal features with a
parametric line-shape model, and (iii) quantify the RF-power dependence of those features.

3.1 Reference-phase optimization

In our setup the electrical current change is detected with a lock-in amplifier (LIA): the external field is modulated
and the in-phase (I) and quadrature (Q) components are recorded. Ideally, a pure spin-dependent signal lies
along the in-phase axis in the I–Q plane. We determine that axis a posteriori by applying principal component
analysis (PCA) to the I–Q data for each field sweep; the first principal component, dominated by the resonant
contribution, defines the correct reference phase, after which the data are rotated accordingly.

Non-resonant artifacts, notably RF heating, generally exhibit a different phase and therefore populate the
orthogonal PCA component. In practice, we see that these artifacts appear with a phase lag close to 90◦ and are
cleanly isolated in the quadrature channel after rotation. Future work will refine this procedure by measuring
the phase lag for each data set and aligning that lag precisely with the Q-axis.



Figure 1. Top: Simulated EDMR first-harmonic derivative (red dotted) overlaid with the measured spectrum (black) from
a 4H-SiC V −

Si diode at 3 V bias, 200 MHz excitation, and 2 G peak-to-peak field modulation. Bottom: Unmodulated
simulated EDMR derivative revealing primary features of the V −

Si spectrum before lock-in convolution. The zero-field
singlet–triplet crossing dominates at B = 0, followed by sharp exchange-mixed spikes near ±15 G, the forbidden half-field
transition at ∼ 35 G, and the resonances at ∼ 71.4 G.



3.2 Line-shape fitting and signal parameters

To extract the amplitude, linewidth, and center field of the main resonance signal and two weak hyperfine
satellites, we fit each spectrum to

∂I

∂B
=

2∑
k=0

Ak
d

dB
L
(
B −Bk,Γk

)
+mB + c,

where the first term is a sum of three Lorentzian derivatives (main transition feature + two hyperfine satellites)
and mB + c is a linear baseline.

3.3 RF-power series

We collected spectra at ν = 200.42MHz and 11 dBm to 23 dBm (12.59mW to 199.53mW) RF power using a
DOTY Scientific loop coil (8 mm diameter, π/2 pulse 7.6µs for 1H at full power). We fitted the curve composed
of three Lorentzian derivatives and a linear baseline using an analysis of peaks in the third derivative of the
lineshape to select initial guesses for the signal fitting. Across the 13 RF power settings we examined, the
coefficient of determination stays tightly clustered in the range R2 = 0.998–0.999. The consistently high R2

values confirm that our fitted model accurately reproduces the observed line shapes (see Figure 2 for an example
fit).

Figure 2. A plot of the total fit produced by our method is overlaid on top of the original signal, both of which include
the effects of the main resonance transition and the hyperfine signals, which are also displayed separately. The hyperfine
signal centers are approximately symmetric around the main signal’s center. We used a 2G modulation amplitude, a
1.25 kHz modulation frequency, and in the case of this particular fit, an RF power of 23 dBm.

The fitted parameters demonstrate an expected power saturation curve where the amplitude of the main
resonance signal stops increasing at higher RF powers (see Figure 3). The linewidth parameters also demonstrate
the effect of power broadening.



Figure 3. The peak-to-peak amplitude of the main resonance signal is plotted with respect to RF power. The amplitude
increase steadily then plateaus and begins to decrease slightly with power broadening, which itself is illustrated by a
plot of peak-to-peak linewidth of the same signal. We see that the ideal operating condition to maximize signal while
minimizing this power broadening for our device is an RF power of approximately 21 dBm.

4. MAGNETIC FIELD SENSITIVITY

4.1 Magnetic-field sensitivity at the NZFMR zero crossing

NZFMR lends itself naturally to quantum-magnetometry because the measurement is reduced to tracking the
slope of a current–field dispersion at a single zero crossing (Figure 4a). For a spin-pair ensemble with a Gaussian
current profile [3,31]

I(B) =
∆I

σ
√
2π

exp
(
− B2

2σ2

)
, (7)

the key figures of merit are σ, the r.m.s. linewidth (in T), ∆I, the line amplitude (in A), and B, the external
field referenced to the center at B = 0.

Lock-in detection. The sinusoidal field modulation is proportional to the derivative ∂I/∂B provided Bmod ≪
σ (Equation (6)). Demodulating that component therefore yields a voltage whose envelope tracks the local slope
at the zero crossing (Figure 4a, inset). The useful bandwidth ∆f is set by the low-pass time constant τ that
follows the mixer in the lock-in chain (Figure 4b).

Shot-noise–limited sensitivity. Because the field modulation moves the signal away from low-frequency
flicker noise, the ultimate noise floor is set by shot noise in the DC transport current I0. Propagating that noise
through the demodulation chain gives the field-equivalent noise density [3]

δB√
∆f

= 2
√
πq

σ3

B2
mod

√
I0

∆I
(8)



Figure 4. (a) First-harmonic NZFMR derivative recorded with a lock-in amplifier. The Gaussian linewidth σ that enters
Equation (8) is extracted from this trace. (b) Spectrum obtained by numerically integrating the derivative, revealing
the signal amplitude ∆I and the DC baseline I0. Together with the modulation amplitude Bmod, these values set the
shot-noise-limited sensitivity in Equation (8).

where q is the elementary charge. Using parameters extracted from Figure 4 (σ, ∆I, I0) and Bmod = 2G, we
obtain a shot-noise-limited sensitivity of δB = 13.2 nT/

√
Hz.

Generality and external factors. Zero-field spin mixing is a generic result of spin-dependent transport
involving an electron–hole (or defect–electron) pair coupled to nearby nuclear spins and has been observed in a
variety of mechanisms [33-36]. Specific details of the transport channel alter the NZFMR response and therefore
modify σ and ∆I, directly affecting sensitivity [37]. External parameters such as temperature and electric field
can also perturb the spin-pair Hamiltonian, leading to measurable shifts in both the linewidth and the amplitude;
these dependencies provide additional knobs for optimizing quantum-magnetometer performance.

5. SUMMARY AND OUTLOOK

Near–zero-field magnetoresistance (NZFMR) in the silicon vacancy of 4H-SiC provides a natural zero crossing
from which to read out magnetic fields with high precision. In this work we showed that a resonance-to-resonance
simulation, built from a sixteen-dimensional spin Hamiltonian and solved with an accelerated Lyapunov approach,
reproduces primary features of observed electrically-detected EDMR spectra, including the NZFMR zero-field
peak, theoretical exchange-mixed spikes at ±15 G, the half-field, and the Zeeman resonances at ±71.4 G. By
matching experiment and theory in both amplitude and rough line shape, the model yields physically grounded
description of spin-dependent recombination (SDR) across the entire spectrum. We attribute the residual mis-
match between our simulated and experimental spectra to additional spin-dependent processes, most likely
spin-dependent trap-assisted tunneling (SDTAT) [38], that are not yet included in the SDR model. Developing a
dedicated SDTAT simulation alongside our SDR framework will not only quantify the individual contributions
of each mechanism, but will also lay the foundation for a unified and comprehensive model. Such a model is es-
sential for disentangling the intrinsic spin-physics parameters (e.g. hyperfine, splitting, exchange coupling) from
extrinsic influences on the zero-field response, notably temperature and applied electric field. A clear separation
of these factors is the key to engineering SiC magnetometers whose performance is limited only by shot noise.

To isolate weak hyperfine signals and the main transition signal, we introduced a phase-optimized lock-in
workflow that rotates the raw I–Q data onto the true signal axis with principal component analysis, relegating
RF-heating artifacts to the quadrature channel. A three-component Lorentzian derivative model with a linear
baseline fits the data with coefficients of determination clustered within the range 0.98 to 0.99 over the 11 dBm
to 23 dBm power range, confirming that the essential spin physics is captured. Power-dependent measurements



revealed a significant broadening of the central linewidth, identifying an operating window near 21 dBm that max-
imizes contrast without excessive distortion. Using the measured linewidth σ, amplitude ∆I, dc current I0, and a
2G modulation field, Equation 8 predicts a shot-noise-limited magnetic-field sensitivity of δB = 13.2 nTHz−1/2,
an order-of-magnitude improvement over previous room-temperature, all-electrical SiC sensors.

Looking ahead, a comprehensive map of the zero-field line shape versus temperature, bias electric field,
and defect concentration will allow intrinsic and extrinsic contributions to be disentangled with even higher
accuracy. Coupling those measurements with the simulation framework presented here will clarify the full role
of spin-dependent recombination in SiC and guide the design of next-generation, fully integrated, radiation-hard
quantum magnetometers for heliophysics, planetary exploration, and biomedical diagnostics.

Data Availability

The data for plots and code for simulating EDMR is available upon reasonable requests.
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pumping at the MOSFET interface,” J. Appl. Phys. 128(24), 244501 (2020).

[20] A. Schweiger and G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, Oxford University Press,
Oxford (2001).
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